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ABSTRACT

-,In this paper we study the stability of finite difference approximations

to initial-boundary hyperbolic systems. As is well-known, a proper

specification of boundary conditions for such systems is essential for their

solutions to be well-defined. We prove a discrete analogue of the above -/if

the numerical boundary conditions are consistent with an inflow part of the

problem, they render the overall computation unstable. An example of the

inviscid gasdynamict equations is considered.
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UNCONDITIONAL INSTABILITY OF INFLOW-DEPENDENT BOUNDARY CONDITIONS IN

DIFFERENCE APPROXIMATIONS TO HYPERBOLIC SYSTEM

Bitan Tadmor*

1. INTRODUCTION - WELL DEFINED HYPERBOLIC SYSTEM

We consider the first order hyperbolic system

(1.aa) + A a (x,t), t ) 0

with initial data

(1.1b) U(X,0) - f(x), t - 0

in the first quarter of the plane 0 ( x f t. Here u 3 u(x,t) is the N-dimensional

vector of unknowns and by hyperbolicity we mean that the (nonsingular) coefficient matrix

A A(x) is similar to a real diagonal A

TAT
"1 

= A diag(A1 ,...Al) ,
(1.2j

X I .. 
> 

0 > A+ A A X (x)

The system (1.1a) - rewritten in its characteristic form

(1.3) a + A ;- 

( denotes multiplication by T on the left), asserts that the characteristic variables

are uniquely determined by the forcing terms #, along the characteristic curves

S(t) + A (x ) - 0. The last N - L of these curves are outgoing curves impinging on the

boundary x - 0 from the right, each of which carries one piece of initial datal thus,

exactly N - 9 pieces of information flow 'he left boundary x - O; these are the

last N - Z outflow omponents of 4 associate, :th ij - - > 014j4N. It therefore

follows that for the system (1.1) to be uniquely solvable, exactly It additional pieces of

information must be provided at the boundary x - 0,
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(1Sul X.1 0 G, rank (B) -

The requirement of these boundary conditions to be on top of the predetermined outflow

components can be expressed as follow (Hersh (11),

For all nontrivial * in the sigenspace * +spanned by the eigenvectoru *
associated with the positive aigenvalues AIt , ws hae -

Ji-1
(1 .4b) 3* 0 0

Had the system (1.1a) been given to us in it. characteristic form (1.3), the boundary

conditions (1 .4) then can be reformulated as the standard reflection

(1.5) a+u K-+A

where u-ui)partitioned corresponding to it. inflow and outflow parts. *The first

*inflow characteristic variables ;u are then everywhere determined via (1 .5) and

(1 .1b) along the ingoing characteristics - <A OI14j(Ll combined with the N-

outflow pieces of data, the solution u is then well defined throughout the region of

integration.

Example.* The linearized inviscid 1 - D gasdynautics equations take the primitive form (1)

(3.la) au aU 0 x

where u S(PU,p) tare the density velocity and pressure respectively, P stande for the

external forces and

(Z.1b) A[-0 n 1/C] Y - ratio of spacific heat.

with (C4flC) denoting the corresponding variables we linearize about. The system in

hyperbolic since A is diagonalizable by

( Neglecting low order terms due to the linearization.
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0 -cc I

TAT =1 diag(IW + c,fl c)

WO consider the. subsonic inflow came 0 < nl < cl two boundary conditions are required at

x - 0 to complement the only predetermined outflow variable 43 3- p - &oO associated with

I -c < 0. WhMile prescribing the two conditions one should neither set boundary
3

values flor the predetermined p - CdoO ., nor should he prescribe only U1 x-0 and

S (or otherwise the two independent relations will again set values for

p - Eau ) Failure to satisfy either one of the above constraints will either imply121-0
inconsistency, or at best, the consistent condition will give no new information and we

will still be missing one piece of date at the boundary. Both asses ae saved by requiring

01.4b) to holds

For all U 2- (POT3PP)t *0 in span(+,* 2) where #1 . Wc,0,0) to

4,2-(Cc~c 2,Cc)j corresponding to X, n 0 X 2 . n+ca)-0 we should have M * 0.

Indeed, requiring B# 1 0 amounts to the requirement of not Imposing 01 x-0 and px=

along (ie. without involving PI- ,while B# 2 *0 (or - which is the same thing -

9(2#2 - 0 0) prevent us frcm prescribing p -CoU X-* we are then assured that we

have two genuinely additional boundary conditions complementing the third predetermined

outflow one (for more details we refer to [21).

In this paper we study difference approximations to the hyperbolic system (1.*1). *we

show that when our numerical boundary conditions are zeroth-order accurate with an Inflow

part of the problemm, they render the overall computation unstable - a discrete analogue of

the necessary condi-tion 01 4b).* In the next section we set the exact mathematical

framework for our discussion, and proof of the main theorem is given in section 3.

This paper was written while visiting the Mathematics research Center, * iivermity of

Wisconsin-Madison, Madison Wisconsin,* and Z thank the Canter and its Director, J. * ohel for

their hospitality.
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2 . WELL DEFINED DIFFERENCE APPROXIMATION8-STATZMENT OF MAIN THEOREM

We would like to solve (1.1), (1.4) by difference approximations. In order to d so,

we introduce a mesh size Ax ) 0 and a time step At > 0 such that A - At/Ax - const.

Using the notation VV(t) E v(VAx,t) we approximate (1.1) by a consistent two-step

solvable basic scheme of the form

(2.1a) Aj(x)vv. (t + At) - -A(xP)v .1 Ct) +AtR V(t).
--r j--r

v - r,r + 1.

Starting with the initial data

(2.1b) v(t 0) - fV * -0,1,...

the scheme (2.1a) is then used to advance in time. To enable our calculation, the r

boundary values I v (t + At)}r-
1  

are required at each time step, and these are obtained
v-0

from solvable boundary conditions of the form

(2 .c) B j (x )v j t + At) - 13 j (x )v j t) + AtH Ct),

-0 1 -0

V - 0,1,...,r - 1 .

Usually for obtaining v0 (t + At) one complements the N - L inflow values taken from

(1.4) by additional t consistent outflow relations and in came of higher order basic

scheme, r ) 1. extra boundary conditions as in (2.1c) must be provided for both the

outflow and inflow components of IvV(t + At))rl.
"-1

We now have an overall difference approximation consisting of interior scheme (2.1a)

together with boundary conditions (2 .lc) and the main property we would like our

approximation to have is stabilityl that is, we want small initial perturbations not to

excite our homogeneous computation but rather to have only a mall omparable affect. For,

it is the stability which guarantees the convergence of our results to the exact solution

of (1.1), (1.4). as we rofine the mesh Ax,At + 0. In fact lack of stability is most

likely to cause our computation to diverge. We therefore make the natural

-4-
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Assumption. The basic scheme (1.6a) is Stable for the pure Cauchy problem -< ( v < (

Of are now left vith the task of determining whether our boundary conditions (2.1c)

maintain the assumed interior stability overall or either our careless boundary treatment

renders the overall computation unstable. DurLng the last decade since the appearance of

the works of Xreis and his coworkers, (31-,1, which introduce a stability theory for

approximations to such mixed problems, many safe procedures to handle the outflow

components were analyzed (e.g. 15]-[S])* Here however, we are interested in the inflow

components whose boundary calculation is required when either the exact inflow conditions

(1.4) are not known or when extra inflow values must be provided at {x Vr. Our main

result is basically a negative one telling what one should not do.

Theorem . If the boundary conditions (21c) are zeroth-order accurate with an inflow

component of system (1.1), i.e., there exists 4+ 6 + such that

(2.2). 5 - + - 0, V-0,1'...r -1j-o0

then the overall approximation (2.1) is unstable.

The above theorem is clearly the discrete analogue of the necessary requirement (1 .4b)

for well-posedness, both reflect the independence of the inflow boundary values on the

differential equation. in the special case of explicit one-leveled boundary extrapolation

it was first proved by Xreiss (91 for the scalar case, and extended subetantially by Burns

110] for the vector came. Here we give a simplified version of her proof for the general

two-leveled implicit approximation. The assumption made in [10, Assumption 3.23, that AJ,

aj are polynomials in A, is removed here so our result is also valid for multileveled

multidimensional approximations, as can be shown using the standard devices which for

* simplicity are omitted. Finally we give a direct estimate of the unstable polynomial

growth of the computed solution. Zven though such growth by itself may be accepted as weak

("
1 Local stability around x 0 is in fact enough - see Section 3.
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instability, it to rejected here due to the possible reflections at the other (right)

boundary which will then result into the untolerable exponential instability 15].

As an example, consider any standard S-point interior scheme approximating the system

(E.1a) above. Two dimensional inflow eigenspace is to be determined at (x 1,t) and - in

case the exact inflow conditions are not known - at (xo0 t) as well. According to the

above theorem, any attempt to calculate the missing values n an nflow-dependent manner,

that is using zeroth-order accurate conditions for either Cc2 - p, CcU + p or any

combination of them will result into instability.

We close this section by finally noting that in general the boundary conditions (2.1c)

are obtained using consistent discretizations of the two sources available to us - the

differential system (1.1a) augmented by the inflow boundary conditions (1.4). By the above

theorem, the approximated inflow boundary values cannot be calculated in an inflow-

dependent manner by a consistent discretization of solely the inflow part of system (1 .1a)l

one must take into account also the outflow data via conditions (1.4). A detailed

procedure along theme lines to achieve theme values with any degree of accuracy is

described in (8] .
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3. U NCONDITIONIAL INSTABZLITY-PROOF Or MIXN THBOREM

Froma the nature of our negative result it in sufficient to restrict attention to the

case localized about x - 0, since it is the constant coefficient case A, S E (~

A.Jj (0), Bj a Sj(0), a3j B j(0), wehich infers the instability of the general case.

The solution of the homogeneous approximation (2.1) with vanishing interior initial

data f. -wra0 (f (fo'"',fr-1) yet to be determined) is given by the Cauchy formula

(3.1) VV (t .. L f 3n. (S) ds, t - n*At2Ti r

Rere r is any contour enclosing the spectrum of the underlying difference

operator and Ip,(.)I" 0 1 *oi2<4 obeys the resolvent equation

(3.2a) Wm A P )Ip ~(a) - 0, v m r,r +1..
jr j

together with the side conditions

(3.2b) j10(z Sj - a3j )o (z) - f, V - 0,1,...,r-I

Squation (3 .2a) is an ordinary difference equation with constant coefficient matricses its

most general t 2-bounded solution is given by III]

(3.3) Oz)- X(a)L Ic(%)0, k - 0,1,...

where we employed the assumption of the Cauchy stability. Here XC.) consists of Wr

columns vectors - they are the N-dimensional Jordan chains j*m(M) }Nr associated with the

characteristic sigenvalue problem~l)
1 -

(1 By consistency it is enough to consider only simple Jordan chains
around az I -see below.
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(3.4) -SA A,)6CJ(z)+,(a) 0 0

L(X) is an Nr-dinentional matrix consisting of the Jordan blocks associated with the

eigenvalues K (a)g and 0 in an Mr-dimensional free vector yet to be determined by Wr
m

boundary conditions (3 .2b) a

(3 .5a) D(Z)0 f D(s) - ID O(Z) ....,D r-()

where

(3.5b) DV (z) - z Cz8V - 3 V)X(z)L 1 (z). V - O,10...'r - 1

The key of the instability proof lies in the study of the singular point z - 1

indeed in what follows we will show that s - I is an sigenvalue of the problem whose

eigenprojection has a polynomial growth, this in turn implies the unstable polynomial

growth of the whole difference operator.* In order to do so, we are now going to use the

consistency condition to gain more precise information about the behaviour near z - 1.

In (5] it was proved by the assumption of Cauchy stability, that the matrix L(z) in

the neighbourhood of z - I takes the form (5, Theorem 9.1]

(3.6a) L(z) - Iz)

where using the consistency of the interior scheme it follows that the 1-dimensional

LAE) is of the form 15, Theorem 9.3]

(3.6b) L,(S) - I - (Ah ) (a 1) + O(z 1)2

while the (Mr - )x (Mr - L O'z satisfies

(3.6c) LO(z)L,(3) 4 0i - 6)1, 6 >0

Consider the first I column vectors * (z) in X(z) which we denote by X+Aa).

I I14mri 9 m
inserting the corresponding eigenvalues of L+(a) from (3.6b), x,(z) -I - (AA )(z 1

* + O(z -1)2, into (3.4), and using the consistency of the basic scheme which amounts to



the standard

A - A, j(Aj -AJ) -A - 0
j-r J i-r

we arrive to

(z- 1) • A El - A 3Mli (Z) -0(z -1)2

Jm-r 
a

By the solvability I A1 i e. = A is nonaingular; dividing by (z - 1) - A we

obtain that

(3.7) X+(z) = X+(1) + 0(z - 1), X+(l) 
+

where X+(1) consists of the L column vectors #,(1) = +m - the Pigenvectors of A

corresponding to its positive eigenvalues X. > 0.a

We now claim that [D(z) - 1  is singular at z - 1. To see that we take T to be an

Nr-dimensional vector whose first P. scalar components, T+F are uniquely determined as

the solution of (see (2.2))
+

X +(1)+ -

and the remaining Nr - £ components are taken to zero. Taking into account (3.6b) and

(3.7) we then find by (2.2)

(3.8a) N(z)T- - B )X (1)T + 0(z - 1) - 0(m - 1)+ J. Jv v + .-+

and hence for d(z) B det(D(z)) we conclude that

(3.8b) d(z) - 0(z - 1) s  a 3 1

The proof of the theorem is almost at our hands now; we consider that part of the solution

corresponding to the eigenprojection associated with z = 1:

(3.9) wM(t) f z ,(z)dz, V 0#1,..., t = nAt

-9-



where by (3.3), (3.5), ,V(z) has the analytic representation ([D()]
"
' - V(z)/d(z))Z): 01

(3.9b) SV(M) - EX +(z),Xl0 W)z L 0 (z)f/d]z)

Taking (3.8b) into account, the residue theorem implies

8-1

(3.10) Vv(tW)- (".Res[(z- 1)k (z)]
k-0 k1

and since by (3.6b) L+(z - 1) - we finally conclude

(n+l) "r 1/2
(3.1)I I w t(t)I - aonst.Et/AtlIfl.

1i) As in [101 one can show that also in our case, the resolvent condition

I*(z)l 4 const.(fzl - 1) Is violated. Indeed using the representation (3.9b) and

employing the equivalent ,-norm, *I*()I8 - [ *(z)H(s)* (z)i12, with

H(z) E [X+(z)X:(z)]-
1 , 

one gets v(a)l > oonst.Iz - 1-3/2.

(ii) Unlike the case of one-leveled boundary extrapolation 110, Section 51, it does not

follow that the more accurate the boundary conditions with an inflow part of our

problem, the worse is the singular behaviour at a - I - the R.R.S. of (3.8a)

remains unaffected in the genuinely two-leveled case.

-10-
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